Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms

نویسندگان

چکیده

GDP is very important to be monitored in real time because of its usefulness for policy making. We built and compared the ML models forecast real-time Indonesia's growth. used 18 variables that consist a number quarterly macroeconomic financial market statistics. have evaluated performance six popular algorithms, such as Random Forest, LASSO, Ridge, Elastic Net, Neural Networks, Support Vector Machines, doing on growth from 2013:Q3 2019:Q4 period. RMSE, MAD, Pearson correlation coefficient measurements accuracy. The results showed all these outperformed AR (1) benchmark. individual model best random forest. To gain more accurate result, we run combination using equal weighting lasso regression. was obtained regression with selected models, which are Machine, Network.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning algorithms in air quality modeling

Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...

متن کامل

Nowcasting Gdp in the Euro Area

This paper compares the mixed-data sampling (MIDAS) and mixed-frequency VAR (MFVAR) approaches to model speci…cation in the presence of mixed-frequency data, e.g., monthly and quarterly series. MIDAS leads to parsimonious models based on exponential lag polynomials for the coe¢ cients, whereas MF-VAR does not restrict the dynamics and therefore can su¤er from the curse of dimensionality. But if...

متن کامل

Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting

The goal of precipitation nowcasting is to predict the future rainfall intensity in a local region over a relatively short period of time. Very few previous studies have examined this crucial and challenging weather forecasting problem from the machine learning perspective. In this paper, we formulate precipitation nowcasting as a spatiotemporal sequence forecasting problem in which both the in...

متن کامل

Using Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media

Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indonesian Journal of Statistics and Applications

سال: 2021

ISSN: ['2599-0802']

DOI: https://doi.org/10.29244/ijsa.v5i2p355-368